沙特阿拉伯
沙漠景观中的智能晶体
阿卜杜拉国王石油研究中心
设计方案呼应了利雅得高原的环境条件,使能源和资源消耗量降至最低,并获得了LEED白金级认证。建筑的基本布局基于一个细胞式的半模块化系统,不同的建筑形成一个整体,通过公共空间彼此相连。
形如蜂巢的六边形棱柱以最少的材料在有限的体量中构成了一个细胞晶格系统,它以最佳方式回应了环境条件,同时满足了内部空间的功能需求。蜂巢状的晶格朝着中轴线的方向逐渐变得扁平,呼应了自然环境中向西方延伸的河床。
新加坡
多层次的立体绿洲
滨海盛景的“绿色之心”
“绿色之心”参照热带雨林中自然气候的垂直分层,景观设计师模拟出了一个绿色的山谷,使其气候根据层级发生变化。
紧凑而高效的布局通过节能通风系统、高性能的外部遮阳设备以及能够降低辐射的玻璃窗得到进一步完善。大楼与新加坡六条地铁线中的四条线路直接相连,私人交通工具的废弃排放量被大幅降低。建筑立面和室内空间皆选用了平静而质朴的古铜色,带来一种和谐舒适的氛围。
美国
LEED金级认证项目
南佛罗里达大学Lynn Pippenger大楼
大楼兼顾了可持续设计中的常用知识以及专业技术,既使用了场地中生长的橡树,也使用了经森林管理委员会认证的木材。大楼的管理系统能够对能量损耗实行监测,机械系统则用于减少能源使用,同时带来最优的空气质量和水源利用率。
日光充足的学士花园将自然光引入建筑中心,高处的屋顶在为花园提供荫蔽的同时后退于外墙,使户外空间能够享受到自然的空气流通,并且使花园得以维持凉爽的环境。庭院的微气候对建筑整体起到了调节作用,降低了室内空间的冷负荷。
加拿大
灵活、个性化的新型教学空间
多伦多格林伍德学院扩建
格林伍德学院的扩建项目获得了LEED的金级认证。学生们可以通过用于统计能耗的内联网了解到各种类型的控制系统。这些系统能够减少建筑的运行成本、降低建筑对环境的影响,同时有助于对学生进行关于日常能源消耗以及绿色建筑实践的教学。
阿联酋
海上博物馆之城
阿布扎比卢浮宫
基于建筑的自然形态和材料的固有性能,被动式的设计手法使气候条件得到了进一步改善,最终成功地减少了42%的阳光辐射、27.2%的能源消耗以及27%的用水量。
阿布扎比卢浮宫以LEED银级认证为目标,同时得到了阿联酋绿色建筑条例的3珍珠等级。防水系统方面,最初施工基于挖方抽水得以建设,建设完成后水泵停止工作,设置在博物馆四周的水池被灌满海水,博物馆重新漂浮于海面之上。博物馆设计还考虑了海洋极端气候的威胁,设置了多处防波堤,以保护建筑和广场不被风暴袭击。
意大利
几何体块打造的绿色建筑
卢卡技术中心
建筑外墙和屋顶的建造达到了良好的隔热标准;优化了冬季阳光照射和夏季热辐射控制;使用太阳能遮阳系统有助于减少能源消耗。
能源和水循环分别由光伏板和雨水箱提供。能源需求比国家法规规定的要低60%。燃气轮机和光伏板产生绿色能源。信用能源平衡;可再生能源在中心内部生产。SBC证书:技术中心将成为托斯卡纳首个实现SBC证书(可持续建筑委员会)的建筑之一,可以估计建筑物每一阶段的环境影响。
以色列
几乎没有任何机械系统的纪念建筑
耶路撒冷纪念堂
纪念堂被规划为一座纪念建筑,因此,设计的重点是创造一种非建筑,几乎没有任何机械系统,而且几乎完全可持续。
建筑中没有空调或电气通风系统。自然气流创造出极佳的温度条件,利用漏斗形状将热空气从屋顶的上端通过间隔的石板排出,从而创造空气流动而达到通风目的。白天的照明无需用电,自然光从顶部的光眼进入,被光筒微妙地过滤,整个空间充满了温和的光线。